

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 202-208 Wang Huijuan, Yuan Quanbo

202

OPT-UFR algorithm for distributed environment

Huijuan Wang, Quanbo Yuan*

North China Institute of Aerospace Engineering, Langfang, Hebei, China

Received 1 October 2014, www.cmnt.lv

Abstract

As a novel relevance filtering method, some experiments are done to illustrate the performance of UFR since this algorithm is proposed.

However, there is no any comparison between UFR and some other relevance filtering mechanisms. This paper compares UFR with

VON in scalability and efficiency. By changing the peer number and changing the AOI when setting the peer number fixed in

experiments, it is proved that UFR is more efficient than VON in these two cases. Then some experiments on group based moving

model prove the result more sensitive. To counter that the original “strip” algorithm to calculate the UFR border is not very efficient,

we proposed OPT-UFR to reduce the useless update messages, and finally proposed a new algorithm to solve the heavy traffic problem

for the joining node. Experimental results show that OPT-UFR always has better performance than both random based and group based
moving models.

Keywords: filtering method, UFR, VON, OPT-UFR

1 Introduction

UFR is a novel relevance filtering method proposed by

Makbily in 1999. The concept of UFR is very different

from other relevance filtering technologies for distributed

environment. Most of the existing relevance filtering

technologies tries to maintain a neighbour list by using

neighbour discovery mechanisms to keep connected and

then implement the relevance filtering according to the

neighbour list. Otherwise, Makbily maintains an update

free region which is called UFR for each pair of peers. It

means that if two peers are both in their UFRs referred to

each other, they don’t need send state update messages to

each other. Because both of the peers will not enter each

other’s AOI if they don’t go out of UFR. This can be

ensured by the algorithms to calculate the UFR borders.

One recent application by using UFR is to detect the

efficient proximity among mobile friends proposed by

Arnon Amir. They use “strips algorithm” which is very

similar to Makbily’s original method to calculate the UFR

borders. They also give out some mathematical analysis to

show the efficiency of UFR algorithm. However, the

condition of the analysis is much too idealized, the

practical environment is not fully considered. Except for

Amir’s work, Makbily and Steed also have some

experiments to illustrate the performance of UFR

algorithm. But they all don’t compare UFR with some

other relevance filtering mechanisms.

The contribution of our work includes the following

aspects. First, we compare UFR with VON to give an

intuitive view of the scalability and efficiency of UFR.

Second, based on the experiments, a regression analysis of

UFR will be given. Third, we propose a kind of an

optimization for “strip algorithms” to reduce the useless

* Corresponding author’s e-mail: 545682864@qq.com

update messages. At last, we discuss the peer joining

procedure and propose a “delayed joining” algorithm to

solve the heavy traffic problem for the joining node.

2 Related works

2.1 STRIPS ALGORITHMS

As mentioned above, strips algorithms is used in the

wireless mobile environment to reduce the location update

messages between peers. Each peer in the world has its

area of interest. The area of interest is assumed to be a

circle with identical radius R for all the peers. Let a, b be

two users whose Euclidean distance, denoted |b−a|, is

larger than R. Let ℓ(a,b) denote the bisector of the line

connecting a and b. (see Figure 1). Let S(a,b) denote the

infinite strip of width R whose central axis is ℓ(a,b). Let ei

denote the line bounding S(a,b) on the side closer to a. The

idea behind this method is that as long as neither a or b

enters S(a,bi), they do not need to exchange location

update messages. The strip serves as a static buffer region

between a and b and ensures that as long as they are on

both sides neither one of them is in the vicinity of the other.

They also discuss the efficiency of strips algorithm by

mathematical analysis. They point out the ε plays an

important role on determining a trade-off between the

desired distance and accuracy in generating alerts and the

required number of location update messages. But actually

in the practical environment, the one step distance of each

peer often is not very small, so the limit case will not occur.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 202-208 Wang Huijuan, Yuan Quanbo

203

R

Stripe(a,b)

Bisector L(a,b)

a

b

FIGURE 1 Concept of stripes algorithms

2.2 VON

VON is a recent proposed relevance filtering method for

fully distributed environment. The Voronoi diagram [13]

from computational geometry is used to maintain and

discover the neighbours. VON has good scalability and

consistency characteristics.

FIGURE 2 VON description

Each node in VON is represented as a site in the

Voronoi diagram. For a given node, they define AOI

neighbours as the nodes whose positions are within its

AOI. Enclosing neighbours are nodes whose regions

immediately surround the given node, and boundary

neighbours are AOI neighbours whose enclosing

neighbours may partially lie outside the AOI [1]

(Figure 2). Each node maintains a Voronoi diagram of all

AOI neighbours and directly connects them to minimize

latency. As only a few neighbours are kept, the cost to

maintain a Voronoi diagram at each node is low. To

prevent overlay partition (i.e., groups of nodes become

mutually unaware of each other), they also require each

node to minimally keep its enclosing neighbours (which

may be outside the AOI when neighbouring nodes are

sparse).

When a node moves, position updates are sent to all

connected neighbours (i.e., AOI neighbours plus any

enclosing neighbours beyond AOI). Neighbour discovery

is done via notifications from boundary neighbours, as

they know both the moving node and other nodes beyond

the AOI (which happen to be their enclosing neighbours).

This way, potential AOI neighbours are discovered with

mutual collaborations. As a node moves around, it will

constantly discover new nodes and disconnect those that

have left its AOI (unless they are enclosing neighbours). A

node thus restricts communications with mostly the actual

AOI neighbours, independent of the scale of the system.

Keeping bandwidth consumption at each node bounded is

the key to VON’s scalability [2].

However, VON is not very efficient. There are two

kinds of extra messages in VON. Firstly, some enclosing

neighbours may be not in the peer’s AOI, so there will be

useless location update messages to be sent. Secondly,

boundary neighbours should send back the enclosing

neighbour lists which are also extra messages for

neighbour discovering.

3 Comparisons between UFR and VON

Our objective is to compare UFR [3] with VON on the

scalability and efficiency aspects. In order to give a clear

view, we use PPP (perfect peer to peer) to make a

comparison. PPP is an ideal case that a peer only sends

location update messages to the neighbours within its own

AOI. No relevance filtering method can be as efficient as

PPP [10]. For VON, it should keep some “remote

enclosing neighbours” [4] which are out of AOI for

neighbour discovering. It also needs to send back

neighbour list from the boundary neighbours to discover

the new neighbours. All of these messages are “useless”

messages. For UFR, when peers hit the UFR border, it

should communicate to update the border. All of the above

communications are “useless” messages. Thus, we adopt

the extra messages as the metric to evaluate the efficiency

of UFR and VON.

We implemented the strips algorithm to calculate the

UFR border in a simulated distributed networked

environment. Each peer in the world has an area of interest

represented by AOI. For VON, we download the source

code written by Tainwan Group. We use the random and

group based moving model to do the simulation

respectively.

3.1 PARAMETER TUNING

Firstly, we keep the world size and the AOI unchanged.

We change the peer number to evaluate the scalability

characteristic. We use the average update message number

per peer per step to be sent including useful and extra

messages to measure the performance. We get the

following results which are obtained from the random

moving model.

Figure 3 shows that as the peer number increases, the

average messages per peer per step to be sent in PPP, UFR

and VON approximately increase linearly. It implicates

that both UFR and VON have good scalability as peer

density increases.

An intuitive explanation for this figure may be like this:

the peer number increases linearly while the world size is

fixed means that the peer density in the world increases

linearly. For the random based moving model, we consider

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 202-208 Wang Huijuan, Yuan Quanbo

204

approximately that all the peers are distributed evenly.

Thus, the average neighbours within the AOI for a peer

will increase accordingly.

FIGURE 3 Performance of UFR and VON with random moving model

Additionally, another phenomenon we can see from

Figure 3 is that the average message number of UFR is

smaller than VON. UFR seems more efficient than VON

in this case.

Secondly, we set the peer number fixed and change the

AOI.

FIGURE 4 Performance of UFR and VON with different AOIs

Figure 4 shows the performance with AOI changed.

We can see that, the message numbers of UFR and VON

both have an approximate quadratic increase as AOI

increases. Similar to the above explanation, when AOI

increases linearly while keep peers density unchanged, the

average neighbours within the AOI increase quadratic

(AOI can be considered as the radius of the area of

interest). Additionally, UFR still has better performance

than VON in this case.

As for the other parameters, the velocity has the same

effect with parameter AOI, the world size is also a relative

value of AOI and the peer number, so we don’t consider

them.

From the above two groups experiments we can

conclude that both VON and UFR scale well. UFR seems

more efficient than VON in general cases.

3.2 REGRESSION ANALYSIS

In order to give a more accurate evaluation, we make a

regression analysis for UFR. Different from the

mathematical analysis of strip algorithms, we use the

experimental data to give out an approximate model of the

performance of UFR. The following are some definitions.

We use d to represents the peer density, PN represents the

peer number, S represents the world size (area of the

world), aoi represents the radius of the AOI. We can get d

from the following expression.

S

P
d N . (1)

From the above intuitive experimental results, we can

see that the average message number marked by N of UFR

is just related to d and aoi. So we can get the target

equation of N. a, b, c and d are the coefficients.

daoicdbaoidaNUFR 22)()(. (2)

By using least square analysis, we get the coefficients

b and c are close to zero, so neglect them. Thus, we get the

two equations for UFR and VON respectively as followed.

2)(36.404.6 aoidNUFR , (3)

2)(1.498.1 aoidNPPP . (4)

If we let e be equal to d*(aoi)2. Actually, e is a

reflection of the average neighbour number of a peer. We

can get the following expression

)1.498.1/()26.006.4(/)(eeNNN ppppppUFR . (5)

We define this as “useless rate” for UFR. Figure 5

shows the tendency of “useless rate”. From Figure 5 we

can see that as the average neighbour number increases,

the “useless rate” seems to decrease. It is a little tricky. But

actually we can assume the limit case: If the AOI is

enlarged to the whole world, all the peers will be in the

neighbour list for each peer, every location update

messages will be “useful”.

FIGURE 5 Useless rate for UFR with random moving model

100 200 300 400 500 600 700 800 900 1000
10

20

30

40

50

60

70

80

90

Peers

A
v
g
 M

e
s
s
a
g
e
s

PPP

UFR

 Linear Fitting

VON

50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

70

80

AOI Size

A
v
g
 M

e
s
s
a
g
e
s

 PPP

 Quadratic Fitting

 UFR

 VAST

1 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

e = d*(aoi)
2

R
a

ti
o

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 202-208 Wang Huijuan, Yuan Quanbo

205

3.3 GROUP BASED MOVING MODEL

We also do some experiments on group based moving

model. Different from the random moving model, group

based moving model organizes peers in some groups. All

the peers in the same group go toward the same destination

during a period. The following figures show the

performance of UFR and VON in group based model. The

performance of UFR and VON with group based moving

model fluctuates much more than with random moving

model. UFR also has better performance than VON (see

Figure 6).

FIGURE 6 Performance of UFR and VON with group based moving

model

FIGURE 7 Performance variety with different group sizes

4 Optimization on stripes algorithms

The original “strip” algorithm to calculate the UFR border

is not very efficient. When the two peers are going closer,

the updates messages will be increased obviously. In

addition, the “strip” only calculates the UFR border by

using the positions of peers but not considers the speed and

trajectories of the peers. In order to reduce useless update

messages and relieve the increasing update messages when

peers going closer, OPT-UFR is proposed.

Figure 8 shows the distribution of the border update

messages. The AOI is set to be 100. All the border update

messages are classified by the distance between the pair of

peers when updates occur. We can see clearly that most of

the update messages are occurred within 200.

FIGURE 8 Update messages distribution in UFR with random moving

model

OPT-UFR algorithm considers the predicted trajectory

of the two nodes. Thus, when the UFR borders are

calculated, we can set the border more reasonably. We

only consider some simple cased now, but from a different

point of view, the easier the better. The simulation

experimental results show that OPT-UFR has better

performance than the original “strip” algorithm.

4.1 OPT-UFR DESCRIPTION

Firstly, when peers hit the border, we should calculate the

new borders by using “strip” method. Secondly, we

calculate out the bisector and the predicted trajectories of

this pair of peers. If the borders should be adjusted

according to the OPT-UFR regulations, we will adjust the

borders according to the corresponding cases. Third, three

different cased are listed here.

FIGURE 9 Pseudo code of OPT-UFR

100 200 300 400 500 600 700 800 900 1000
10

20

30

40

50

60

70

80

90

Peers

A
v
g
 M

e
s
s
a
g
e
s

PPP

UFR

VON

0 100 200 300 400 500
20

30

40

50

60

70

80

90

100

110

120

Group Size

A
v
g
 M

e
s
s
a
g
e
s

PPP

UFR

VON

200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16
x 10

6

Radius

B
o
rd

e
r

H
it
s

//get bisector

line bisector=GetBisector(peer1, peer2);

//get predicted trajectory
line traj1=GetTraj(peer1);

line traj2=GetTraj(peer2);

if(Intersect(traj1, bisector) && Intersect(traj2, bisector)) {

 double dist1=GetDistance (peer1, traj1, bisector);

 double dist2=GetDistance (peer2, traj2, bisector);
SetBorderInverseProp (peer1,peer2, dist1, dist2,

bisector);

} else if (Intersect (traj1, bisector) | | Intersect(traj2,
bisector)) {

 if(Intersect(traj1, bisector) {

 SetBorderNear(peer2, peer1, bisector);
 }else {

 SetBorderNear(peer1, peer2, bisector);

 }
} else {

 //do nothing

}

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 202-208 Wang Huijuan, Yuan Quanbo

206

1) If the two trajectories both have intersecting points

with the bisector, we try to let the two peers arrive the

border at the same time. In order to do this, we let the

distance between the peer and its UFR border be inverse

proportion to the distance between this peer and the

intersecting point of its trajectory and the bisector.

2) If there is only one intersecting point, it implicates

that one peer is leaving the UFR border, so we can set the

border very near to this leaving peer and this can let

another peer goes further without hitting the border.

3) If there is no intersecting node, it means that two

nodes are both leaving each other. Thus, we don’t need to

adjust them anyway.

4.2 EXPERIMENTAL RESULTS

We test OPT-UFR algorithm with simulation programs.

Random moving model and group based moving model

are used as the moving model. The experimental settings

are listed by following: world size (1000×1000), velocity

(5), AOI (100), time step (500). We change the peer size

to test different performance with different densities and

collect the number of border update messages as our

metric.

We get the following results. Figure 10, Figure 11 and

Figure 12 shows the comparison of the OPT-UFR and

“strip” algorithm with random moving model.

FIGURE 10 Comparison between OPT-UFR and Strips algorithm with
random moving model (a)

FIGURE 11 Comparison of OPT-UFR and Stripes algorithm with

random moving model (b)

FIGURE 12 Comparison of OPT-UFR and Stripes algorithm with
random moving model (c)

FIGURE 13 Comparison between OPT-UFR and Strips algorithm with
group based moving model (a)

FIGURE 14 Comparison between OPT-UFR and Strips algorithm with

group based moving model (b)

Figure 13, Figure 14 and Figure 15 show the

comparison of the OPT-UFR and “strip” algorithm with

group based moving and group based moving model

respectively. The group size is set to be 50. We can see that

OPT-UFR always has better performance with both two

moving models.

500 1000 1500 2000
0

2

4

6

8

10

12
x 10

7

Peers

T
o
ta

l
M

e
s
s
a
g
e
s

PPP

OPT

STRIPS

500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3
x 10

7

Peers

U
p
d
a
te

 M
e
s
s
a
g
e
s

OPT

STRIPS

500 1000 1500 2000
5

10

15

20

25

30

Peers

A
vg

 M
e
ss

a
g
e
s

OPT

STRIPS

500 1000 1500 2000
0

2

4

6

8

10

12

14

16
x 10

7

Peers

T
o
ta

l
M

e
s
s
a
g
e
s

PPP

STRIPES

OPT

500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3
x 10

7

Peers

U
p

d
a

te
 M

e
s
s
a

g
e

s

 OPT

 STRIPES

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 202-208 Wang Huijuan, Yuan Quanbo

207

FIGURE 15 Comparison between OPT-UFR and Strips algorithm with

group based moving model (c)

5 Peer joining

One of the key problems is the peer joining procedure for

UFR scheme. In order to run the UFR algorithm, we

should know all the existing peers to calculate the UFR

borders. There will be a heavy traffic load for the joining

peer when there are so many existing peers.

In order to solve this problem, we propose a feasible

peer joining strategy which is called “joining by step”. The

main idea of the method is to delay some UFR border

calculations for the un-urgent peers. We only calculate

UFR borders for the “nearer peers” for the joining peer.

We first select the nearest peer to the joining peer as its

proxy and get the UFR border list from the proxy. The

objective is to get the “at least” distance from the joining

peer to each of the existing peer. What we can only use is

the UFR border list from the proxy. Then, we divide these

UFR border into two groups. Group one is that both the

joining peer and the proxy are at the same side of the

border. The other group is that the joining peer and the

proxy are at the opposite side of the border. We only

calculate the distances to the borders from group one. For

the borders from group two, we are not sure the “at least”

distance from the joining peer to the corresponding peer

related to this border, because, the joining peer is not in the

safe area for the corresponding peer related to this border.

At this time, we set the distance between these two peers

to be 0.

After the distance calculations, we get the “at least”

distance from the joining peer to each of the existing peers

in the world. We use variable dis to represent this distance.

We then calculate out the steps can be delayed for each

peer in the world by the following equation.

2,
2

2,0

aoidis
aoidis

aoidis

steps (4)

The variable steps represents the time steps of this

connection refers to this peer can be delayed. aoi is the

AOI radius for this pair of peers. V represents the velocity

of the two peers. We assume all the peers have the same

AOI and velocity.

Thus, the joining peer can firstly connect the existing

peers which the delay steps are 0. After a time step, it can

continually connect the peers which the delay steps are 1.

So on, we can divide the peer joining procedure into many

steps. Additionally, during the peer joining period, though

many peers may not know the new joining peer, the

consistency actually is kept all the time. Because those

peers who don’t know the joining peers won’t have any

interaction with the joining node.

5.1 FEASIBILITY OF DELAYED JOINING

Finally, we discuss the feasibility of joining by step. The

most important feature should be satisfied for the method

is the appropriate group division. The distribution of the

peers in each group should be average. We do some

experiments to get the distribution of the peers according

to the steps can be delayed and get the following

Figures 16.

FIGURE 16 Peer distribution according to steps can be delayed

The experimental settings are like these, world size

(1000×1000), AOI (100), velocity (5), peers (1000). These

two figures are separately for the random moving model

and the group based moving model. We let a new peer join

the world several times and get the average peer

500 1000 1500 2000
5

10

15

20

25

30

Peers

A
v
g
 M

e
s
s
a
g
e
s

STRIPS

OPT

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

Steps Can Be Delayed

P
e
e
rs

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

Steps Can Be Delayed

P
e
e
rs

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 202-208 Wang Huijuan, Yuan Quanbo

208

distributions. From the Figure 16 we can see that the

number of peers in each group is average. The red point

represents the average neighbours in this world for each

peer. Thus, we can conclude that only about average

neighbours number peers should be connect immediately

for the peer joining. So the “joining by step” strategy

seems to be feasible.

6 Other issues

Another issue should be considered is the computational

complexity of UFR. Different from VON, each peer in

UFR should keep strips of all the other peers in the world.

Thus, each step one peer should find out which UFR

borders it goes across and should be updated. When the

peer number is very large, the computational complexity

will be a problem. Fortunately, some data structures and

algorithms focus on this problem have been proposed and

the computational complexity can be controlled under

O(nlgn).

7 Conclusions

We have proposed an optimization algorithm In order to

reduce useless update messages and relieve the increasing

update messages when peers going closer. The algorithm

is based on UFR. When peers hit the border, we should

calculate the new borders by using “strip” method, then

calculate out the bisector and the predicted trajectories of

this pair of peers. we will adjust the borders according to

the corresponding cases when adjustment needed

according to the OPT-UFR regulations.

By testing OPT-UFR algorithm with simulation

programs, results show that OPT-UFR has better

performance than the original “strip” algorithm.

Otherwise, “delayed joining” algorithm can solve the

heavy traffic problem for the joining node.

OPT-UFR has been proposed to relieve increasing

useless update messages when peers going closer. The

UFR algorithm, as described above, is applied only to a

pair of agents. In multi-peers environment, a significant

computation burden will appear when we use the UFR in

every peer. This shows that a fully suitable algorithm for

the entire system needs further research.

References

[1] Oliveira J C, Georganas N D 2003 VELVET: An Adaptive Hybrid

Archi-tecture for Very Large Virtual Environments Presence 12(6)

555-80
[2] Hu S Y, Chen J F, Chen T S 2006 VON: A Scalable Peer-to-Peer

Networ-k for Virtual Environments IEEE Network

[3] Makbily Y, Gotsman C, Bar-Yehuda R 1999 Geometric Algorithms
for Message Filtering in Decentralized Virtual Environments 39-46

[4] Keller J, Simon G 2002 Towards a Peer-to-Peer Shared virtual

Reality Proc.22nd ICDCS(Wksps.) http://solipsis.netofpeers.net
[5] Benford S, Fahlen L, Greenhalge C, Bowers J 1994 Managing

mutual awareness in collaborative virtual environments Proceedings

of ACM SIGCHI Conference on Virtual Reality and Technology
(VRST ‘94)

[6] Capps M, Teller S 1997 Communication visibility in shared virtual

worlds Proceedings of the 6th Workshop on Enabling Technologies:
Infrastructure for Collaborative Environments Cambridge MA

[7] Clarson C, Hagsand O 1993 DIVE - a platform for multi-user virtual

environments Computers & Graphics 17(6) 663-9
[8] Earnshaw R A, Chilton N, Palmer I J 1995 Visualization and virtual

reality on the Internet Proceedings of the Visualization Conference

Jerusalem Israel
[9] Lea R, Honda Y, Matsuda K, Matsuda S 1997 Community Place:

Architecture and performance Proceedings of Second Symposium on
the Virtual Reality Modeling Language (VRML ‘97) 41-50

[10] Hu S Y, Liao G M 2004 Scalable Peer-to-Peer Networked Virtual

Environment Proc. ACM SIGCOMM Wksp. on NetGames 129–33

[11] Macedonia M R, Brutzman D P, Zyda M J, Pratt D R, Barham P T,
Falby J, Locke J 1995 NPSNET: A multi-player 3D virtual

environment over the Internet Proceedings of the 1995 ACM

Symposium on Interactive 30 Graphics 93-4
[12] Singhal S, Zyda M 1999 Networked Virtual Environments: Design

and Implementation New York: ACM Press

[13] Alexander T 2003 Editor, Massively Multiplayer Game
Development Charles River Media

[14] Stoica I 2003 Chord: a Scalable Peer-to-Peer Lookup Protocol for

Internet Applications IEEE/ACM Trans Net 11(1) 17-32
[15] Knutsson B 2004 Peer-to-Peer Support for Massively Multiplayer

Games Proc. INFOCOM 96-107

[16] Chen K T, Huang P, Lei C L 2007 Game Traffic Analysis: An
MMORPG Perspective to appear Comp Networks 51(3)

[17] Funkhouser T A 1995 RING: A Client-Server System for Multi-User

Virtual Environments Proc Symp Interactive 3D Graphics 85-92
[18] Singhal S K, Cheriton D R 1996 Using Projection Aggregations to

Support Scalability in Distributed Simulation Proc ICDCS 196-206

Authors

Huijuan Wang, 3/23/1982, Langfang, Hebei, China.

Current position, grades: lecturer.
University studies: Bachelor degree and Master degree of Engineering in computer science and technology in Nankai University.
Scientific interest: parallel and distributed algorithms and embedded system.
Publications: more than a dozen papers.

Quanbo Yuan, 5/12/1984, Handan, Hebei, China.

Current position, grades: lecturer in North China Institute of Aerospace Engineering.
University studies: Bachelor degree in North China Institute of Aerospace Engineering, Master degree study in Tianjin Polytechnic University.
Scientific interest: computer science.
Publications: more than a dozen papers.

